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NONLINEAR PROBLEMS OF STRESS CONCENTRATION NEAR HOLES IN PLATES 

ABSTRACT 

The author surveys 36 (mostly Soviet) papers and mono- 
graphs dealing with the nonlinear problems of stress concen- 
tration near holes in plates, giving special emphasis to the 
solution of these problems by the methods developed by N. I. 
Muskhelishvili and his school for dealing with the plane 
problem of elasticity theory. 
use of complex potentials in conjunction with conformal map- 
ping and Cauchy integrals. 

These methods consist in the 

Savin begins with a historical and substantive survey 
of recent developments in the methodology of plane nonlinear 
elastic theory. These include the establishment of the fun- 
damental system of equations of nonlinear elasticity theory 
for incompressible and compressible materials in a plane 
stress condition and inplane deformation and the use of the 
small-parameter method for the approximate solution of the 
system (Adkins, Green, Shield, Nicholas); the derivation of 
a compatibility condition for finite plane deformations of 
an incompressible material expressed in terms of an invari- 
ant strain characteristic (Tolokonnikov); the development of 
a solving system of equations for plane deformation in terms 
of displacements (Slezinger and Barskaya); the approximate 
solution of the problem of stress concentration near an eliip- 
tical hole both in the case of plane deformation and for a 
generalized stress condition, i.e., a thin plate in a homo- 
geneous stress condition at infinity (Koyfman). 

Following this, applications of the above techniques 
are discussed for a great variety of stress concentration situ- 
ations: (uniaxial tension-compression, tension-compression 
from all sides, pure shear); stress concentration near an 
elliptical hole (tension along the major hole axis, tension 
along the minor hole axis, tension (compression) from all 
sides); effects of hole reinforcement by means of elastic 
rings; stress concentration near free and reinforced curvi- 
linear holes. 

The author concludes with a brief description of the 
so far unique results obtained by Ya. F. Kayuk on the pat- 
tern of the stress condition near the hole in an elastic 
flexible plate following its post-critical deformation. 

*/116 - 
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51. The development of new synthetic wterials and the increased use /116 

of thin-walled constructions consisting of thin plates and shells in recent 

years have occasioned the need for a more exact formulation of the pertinent 

problems in elasticity theory. 

This more exact formulation usually leads to the general (both physically 

and geometrically) nonlinear problem of elasticity theory, or to the purely geo- 

metrically nonlinear problem, or, alternatively, to the purely physically non- 

linear problem. 

It must be noted that the nonlinear formulation of many problems is nothing 

new in elasticity theory. 

laid in the very first stages of development of this science. A s  time went on, 

however, it was linear elasticity theory C321 which received the greater empha- 

sis, yielding much that was useful from both the theoretical and the engineering 

standpoint. 

The groundwork for nonlinear elasticity theory was 

__ 

Specifically, it was within the context of Itmar elasticity theory that 

powerful and efficient techniques were developed for solving entire classes of 

problems. The most effective of these were the solutions of the plane problem 

of elasticity theory developed by Academician N. I. Muskhelishvili [l] and his 

pupils, i.e., the methods of complex potentials combined with conformal mapping 

and Cauchy integrals, methods which afford a means of reducing the basic prob- 

lems of plane elasticity theory to boundary-value problems of the theory of ana- 

lytic functions of a complex variable. 

These techniques also turned out to be the most effective ones in handling 

the nonlinear plane problem of elasticity theory -- specifically, the problem of 

stress concentration near holes. However, due to the enormous mathematical dif- 

ficulties involved, the number of papers dealing with this problem is still very 
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small. 

20 titles. 

The list of original s t i i d i e s  appnded to the present paper contains just 

92. The earliest studies on the nonlinear plane problem of elasticity the- 

ory, and specifically on the concentration of stresses near a circular hole were 

those of Adkins, Green, andShieldC21, Adkins and Green C41, and Adkins, Green, 

and Nicholas C31, wherein the authors established the fundamental system of /117 

equations of nonlinear elasticity theory for both compressible and incompressi- 

ble materials, and for both a plane stress condition and plane deformation under 

Lhe most general elasticity relations 

ij where T are the contravariant components of the stress tensor referred to a 

curvilinear coordinate system in the deformed body; W(I1, 12, I ) is the defor- 3 
__ 

mation energy density; Ir (r = 1, 2, 3) are the invariants of the deformation 

tensor, 

gik and Gik are the contravariant components of the metric tensors of the unde- 

formed and deformed states of the elastic body, respectively. 

By introducing the stress function U satisfying the equilibrium equations, 

the authors of C21, C31, and C4] obtainedthe complete fundamental system of equa- 

tions of the plane nonlinear problem of elasticity theory consisting of 

tions for determining the two functions U, D in the case of plane deformation, 

equa- 

and the three functions U, D, and A = h/h 

stress condition, i.e., of a thin plate, where h and h are the half-thicknesses 

in the case of the generalized plane 0 

0 
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of the plate before and after deformation, respectively. 

The fundamental system of equations for the generalized plane stress con- 

- dition, i.e., for a thin plate, expressed in the coordinates ( z ,  z )  after defor- 

mation is of the form 

where /118 

- The system for plane deformation in the coordinates (2; z )  is of the same 

forn. 

These fundamental systems can also be written in the coordinates (q, ?) 
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hefore deformation. 

It is clear from system (2) that because of the immense complexity of these 

equations the best one can hope for is their approximate solution. 

The authors of [21, C31, and C41 suggest that such an approximate solution 

may be obtained by the small-parameter method whereby the functions sought, U, D, 

and A, as well as all the known functions appearing in these equations are re- 

presented in the form of expansions 

in powers of the small parameter E, where D = z - 
ment function; H is a constant equal to p, i.e., the modulus of rigidity of the 

material for vanishingly small deformations in the case of plane deformation and 

to 2hp in the case of the generalized plane state, i.e., for a thin plate. 

= u+iv is a complex displace- 

0 

~ 

Introducing these expansions (3) and others similar to them into the funda- 

mental systems of equations and setting the coefficients of like powers of E 

equal to zero, we obtain an infinite system of equations for the required quan- 

tities U'j); D'j); A(') (j = 1, 2, 3 ) ,  which is the j-th approximation of the 

required solution of the problem. 

(1) The first approximation, i.e., the equation for the functions U(l), D , 
and A = 1 corresponds to classical linear theory and leads to the familiar Kolo- 

sov-Muskhelishvili relations for first-order complex potentials. The method of 

finding these potentials is known C11; in addition, the potentials have already 

been determined for many hole shapes and loading situations C9].  

The fundamental systems of equations can be represented in complex co- /119 
- 

ordinates both before deformation (2, z )  and after deformation (q, Ti), so that 
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the potentials can 5e expressed either in the coordinates (2, T)  or in the co- 

ordinates (q, y). 
The formulas for the functions a2u(2) and expressed in terms of second- 

a 2  - 
order potentials in the coordinates ( z ,  z )  are of the form C41, C161 

. .  
d z  ( 4 )  

- - 
where f(z, z )  and fl(z, z )  are known functions expressed in terms of the complex 

potentials jl(')- ( z )  and $('I* (z> of the first approximation, i.e., in terms of 

known functions; k is a known constant. 

The components of the stress tensor referred to the coordinates of the 
- 

points of the body in the deformed state ( z ,  z )  are determined from the formulas 
~ 

The second-order complex potentials $(2)* ( z )  and $ J ( ~ ) *  ( z )  for the case of a 

finite or an infinite multiply coMected region and the formulation of the fun- 

damental boundary-value problems of the nonlinear plane problem of elasticity 

theory are the subjects of a paper by G. N. Savin and Yu. I. Koyfman C161. 

In contrast to classical linear elasticity theory, nonlinear elasticity 

theory admits of fundamentally new variants of boundary-value problem formula- 

tion in the determination of second-order potentials. 

Thus, the following three variants are possible for the first fundamental 
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problem: 

1) the external forces are given along a known contour of the deformed body; 

2) the external forces are given along a known contour of the undeformed 

body; 

3) the boundary of the region is given for an undeformed body, and the E- 

ternal forces are given along an (unknown) contour of the deformed body. 

A similar situation is obtainedinthe case ofthe second fundemental problem 

C161. Provided that the stresses are finite at infinity, the second-order 

complex potentials 4")- (2) and $(')* (2) for the case of an unbounded region are 

/120 

of the form 

where N an( N are the values of the principal stresses at infinity; 8 -5 the 

angle between the principal direction of N and the Oy axis; E and E2 are 

known constants, developed expressions for which are given in 1161. 

1 2 

1 1 1 

It should be noted that in one of the aforementioned papers the problem of 

convergence of expansions (3) for the functions U, D, and X is not even posed. 

No limitations are imposed on the function W, the deformation energy den- 

sity, in the derivation of the fundamental system of equations of plane nonlin- 

ear elasticity theory. 

In the case of incompressible materials (including rubber, which satisfies 

- this incompressibility condition over a very wide range of elongations reaching 

as high as 50%), the function W in papers C23, C31, C41, and C161 is taken in 

the form 
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w 3: c, (1, -3 ) i -  c, (I* -3); 
(7) 

where C 

termined experimentally. 

> 0 and C2 > 0 are the elastic constants of the material and are de- 

The function W(z) was first proposed by Mooney C81. 

l 

In the derivation of the general equations of nonlinear plane elasticity 

theory and the construction of an approximate method for their solution, the 

authors of C21, C31, C41, and E161 impose no limitations on the function W, al- 

though it is a well-known fact that in linear classical theory the function W 

must obey certain very specific conditions, namely: in order for the ordinary 

boundary-value problems of elasticity theory to have a unique solution (Kirch- 

hoff's theorem), the function W must be a positive definite, homoe;eneous quad- 

ratic form. 

In nonlinear elasticity theory, on the other hand, the problem of the form 

-- of classes of functions which can serve as the function W, the deformation en- 

ergy density of an elastic material, still remains unsolved C191. 

- 

The chosen function W, as we see from formula (l), has its own correspond- 
ij ing values of 'I , i.e., its own special elastic body. 

In the general case, i.e., in the case of nonlinear elasticity theory, the 

12, I ) cannot be completely arbitrary. This may be seen, for 1' 3 function W (I 

example, from the fact that for vanishingly small deformations, when all bodies 

obey Hooke's law, this function W must be a positive definite quadratic form. 

The papers of T. Doyle and J. Ericksen C191 and Truesdell E221 contain /121 

surveys of studies on this problem; Doyle and Ericksen C191 formulate the neces- 

sary conditions for an incompressible material, 

d w>o; 
;. 0, ' 

d W  p -- 
d l ,  

(i = 1. 2) 
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which must be satisfied during the application of stresses to such a body, where 

6 .  are the principal deformations. 
1 

In linear theory the second condition in ( 8 )  indicates that the modulus of 

rigidity v must be a positive quanrity. 

In 1953 Adkins and Green C21 published for the first time for a nonlinear 

problem an approximate (accurate to within the second approximation) solution of 

the Kirsch problem, i.e., the problem of the distribution of stresses near a 

round hole for the case of plane deformation of an incompressible material with 

the uniaxial stress condition L T ' ~ )  = p = const at infinity. Somewhat later, in 

paper C41, these authors, in considering other problems for a round hole, also 

consider the problem of the concentration of stresses near a round hole in a 

thin elastic (both geometrically and physically nonlinear) plate under uniaxial 

tension due to the forces p = const at infinity. 

than that employed in C2-41 is used in dealing with the problem of stress con- 

centration near a round hole in the papers of L. A. Tolokonnikov 1131, I. N. 

A somewhat different approach 
__- 

Slezinger and S. D. Barskaya C141. 

L. A. Tolokonnikov E131 obtained the compatibility condition for finite 

plane deformations of an incompressible material expressed in terms of an in- 

i' variant characteristic of deformation, the deformation intensity 3 

Tolokonnikov likewise assumes that the physical law of deformation is char- 

acterized by the relationship between the octahedral tangential stress T~ and 

the deformation intensity 3.. 
1 

Under this assumption, proceeding on the basis of the compatibility equa- 

tions and equilibrium equations which are satisfied by the introduction of the 

stress function, Tolokonnikov obtains the solving equation for the problem of 

finite plane deformations of an incompressible material in terms of the stresses. 

9 
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I This equation is likewise integrated by the small-parameter method. He then con- 

siders (in complex coordinates of the undeformed state of the body) the problem 

of stress concentration near a round hole (plane deformation) whose contour was 

initially round, under uniaxial compression (tension); it is assumed that the 

physical deformation law is of the form 
I 

Tf  p t g 3 ;  3 = 2 6s 31. 1 
(9) 

In this variant, the following formula (with regard for three approximations)/l22 

is given for the concentration coefficient k**: 

Formula (10) implies that the concentration coefficient at first increases with 
__ 

increasing stress for 0 < E  < 0 .2  (p > 0), and then diminishes starting with the 
F\ 

value E = 0.2. u 

This is due to the increasing role played by the factor of physical nonlin- 

earity of the material in the deformation process. The view is also expressed 

that consideration of two approximations basically characterizes the geometric 

nonlinearity of the problem. 

I. N. Slezinger and S. D. Barskaya C141 obtain a solving system of equa- 

tions for plane deformation in terms of displacements. 

problem is geometrically linear and physically nonlinear, since the deformation 

law used is the physical one suggested by N. V. Zvolinskiy and P. M. Riz 1341, 

C351. In other words, it is assumed that there is a linear relationship between 

the principal stresses referred to the initial sectional area, and the principal 

elonpations. 

It is assumed that the 

I 
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On the basis of the resulting solving equation, Slezinger and Barskaya em- 

ploy the small-parameter method to obtain an approximate solution of the problem 

of stress concentration near a hole round (in the undeformed state) for plane 

deformation with a uniaxial stress condition at infinity. 

The authors give formulas (up to an including second-order terms) for the 

stress components (T 

the values of the concentration coefficient under tension, 

and the displacement, as well as a formula and Table 1 for 8 

. 3-+6 (2 -~x )  a 
i +0,5 (3- z ) ~  

= 

where p is the stress at infinity referred to the initial sectional area; A, i.~ 

are the Lam6 constants. 
~ 

A s  we see from Table 1, with this variant of the elasticity relations there 

is an increase in the concentration coefficient in comparison with linear theory 

ko = 3. 

The fundamental systems of equations of the nonlinear plane problem of e- 

lasticity theory obtained in C21, C31, and C41 and the approximate methods for 

their solution in the simplest cases of a round hole or round washer given there 

show that these problems can be solved for other, non-round holes or bodies only 

by resorting to the arsenal of powerful methods of solution developed in plane 

linear elasticity theory, and first of all by using the Kolosov-Muskhelishvili 

complex potentials in conjunction with conformal mappings and Cauchy inte- /123 

grals. 

Using this method of attack, Yu. I. Koyfman C151 obtained an approximate 

(to within second-order terms) solution of the problem of stress concentration 

11 



Table 1 

near an elliptical (and as a special case, circular) hole both in the case of 

plane deformation, and for the generalized stress condition, i.e., a thin plate, 

with a homogeneous stress condition at infinity. 

In C151 Koyfman determines the first- and second-order complex potentials 

* 
__- for various conditions at infinity and cites formulas for the stresses crJ8 and 

o on the contours of both a round and an elliptical hole; the shapes of the 

holes are given in the deformed and undeformed states of the body. 

~ 

** 
8 

Some results on stress concentration near a round and an elliptical hole 

computed by Yu. I. Koyfman both for the case of plane deformation and for the 

generalized plane stress state, i.e., a thin plate, are given below. 

Section 1. Stress Concentration Near a Round Hole 

a) Uniaxial tension-compression. 

Variant 1, where we consider the concentration of stresses over the contour 

of a hole which is round in the deformed state. 

* The stresses o along the hole contour in the case of tension-compression 
8 

are 

*v is the Poisson coefficient. 

12 



w h e r e  9 1s the polar a g l e  iz the deformed body; N is t h e  p r i n c i p a l  stress a t  

i n f i n i t y ;  y ,  k, 6 are elastic constants whose values are given i n  [4] and [16]; 

I3 is  equal t o  p, t h e  modulus of r i g i d i t y ,  f o r  plane deformation and t o  2hp f o r  

a t h i n  p l a t e ;  2h is  t h e  thickness of the p l a t e  a f t e r  deformation. The concen- 

t r a t i o n  coe f f i c i en t  i s  /124 

0 

In p a r t i c u l a r ,  f o r  an incompressible material, by [12] and [13], w e  have: 

1 f o r  plane deformation, 

. .i * 

f o r  a p l a t e ,  i.e., a plane generalized stress condition, 

- 4 cos 2 9 f 4  cos 4 8 
* *  

where 1 = C2/C1; C1, C are Mooney constants. 2 
-- ~ 

Table 2 gives concentration coe f f i c i en t s  computed using formulas (15) and 

(17) f o r  various values of N/H I n  computations wi th  t h e  lat ter formula, t h e  

value of 1 = C2/C1 w a s  assumed equal t o  1=  1/19. 

0' 

From t h e  formulas f o r  K* (15) and (17) and t h e  d a t a  of Table 2.we see t h a t  

consideration of nonlinear corrections r e s u l t s  in a considerable divergence of 

lFormula (14) appeared f o r  t he  f i r s t  t i m e  i n  [2]. 

13 



the concentration coefficients K* from their values as given by linear theory. 

Table 2 

-0.3 -0.2 -0.1 0.1 0.2 0.3 

K* p.d. 2.625 2.750 2.875 3.125 3.250 3.375 

2.514 2.676 2.838 3.162 3.344 3.486 K* 
PI* 

Linear 
theory 

3 

3 

In making comparison with linear theory one must bear in mind that in the 

present variant, the finite round contour can be obtained in two ways: either 

by stretching a plane with an oval hole along its minor axis, or by compress-/125 

ing it along its major axis. Clearly, the larger the tension required to alter 

(deform) the initial oval contour into a round contour (for an oval with a 

shorter minor axis), the higher the stress concentration along the contour. 

the case of compression, as the compressing forces are increased (for an oval - 

In 

elongated along the major axis), the stress concentration along the hole contour 

diminishes. 

Variant 2, where we consider the concentration of stresses over the contour 

of a hole which was round prior to deformation. A s  ii result of deformation, 

this round hole becomes oval. I ts  exact shape depends on conditions at infinity 

(it is elongated along the axis of tension if a tensile force is applied and a- 

long the axis perpendicular to the axis of tension upon application of a com- 

pressing force). 
** The stresses u along the contour of the deformed hole which was original- 8 

ly round are 

14 



--I. W l l r L e  L-- 6 is Che polar angie in the undeformed piane. The rest of the symbols 

have the same meaning as in formula (12). 

For the concentration coefficient K** formula (18) gives us 

For an incompressible material (18) and (19) yield for the case of plane defom- 

ation, 

-K*' = 3  
p.d. I P 

and for the case of a thin plate, 
* I  

i 

144 ( I t l )  No 
K** -3 [ 1- 

P I .  

TaSle 3 gives values of the concentration coefficients computed using form- 

ulas (21) and (23) for the same values of the elastic constants as in Table 2. 

Comparing the numerical values given in Tables 2 and 3 we note some diverg- 

This can be explained by the alteration of the shape of the hole due to ence. 

deformation. Thus, as the tension forces increase in Variant 2, the ini- /126 

tially round hole becomes more and more oblate along the axis perpendicular to 

the axis of tension (due to the forces N at infinity), so that the stress con- 

centration at the point 8 = n/2 of the contour diminishes. In compression, on 

the other hand, the round hole flattens out along the axis of compression, and 

15 



the stress concentration at the point 8 = mi2 of the contour increases. 

Table 3 

-0.1 0.1 0.2 0.3 

1.95 2.05 2.10 2.15 

1.94 2.06 2.12 2.18 

b) Tension-compression from all sides. 

With tension-compression from all sides, the initial round shape is unal- 

tered while the hole changes in size, i.e., in radius, which has no effect at 

all on the stress condition near the hole .  

* ** In this case u8 = u so that the concentration coefficient is given by 8 ’  

the formula 

Linear 
theory 

2 

2 

( 2 4 )  

The values of K ( 2 4 )  for an imcompressible material both in plane deforma- 

tion and in the case of a thin plate are given in Table 4 for various values of 

W H O  

Table 4 

The effect of nonlinear corrections both in tension and in compression is 

evident from the above data. 
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ji27 - cj Pure shear. 

Variant 1. If the plane under consideration in the deformed state is a re- 

8 gion weakened by a round hole while in a state of pure shear, the stresses u 

along the contour are 

0.1 0.2 

4.25 4.50 

4.35 4.69 

K* 

K* 
p.d. 

PI- 

From ( 2 5 )  we obtain the following formula for the concentration coefficient: 

Linear 
0.3 theory 

4.75 4 

5.04 4 

For an incompressible material, ( 2 5 )  and ( 2 6 )  give us: 

in the case of plane deformation, 

in the case of a thin plate, 

* * 
Table 5 contains some values of K (30) and K ( 2 8 )  for various values PI. p.d. 

of N/HO. 
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The foregoing results bespeak the substantial effect of nonlinear correc- 

tions of linear theory. 

Variant 2. This is the case of a pure shear applied to a plate weakened by 

a hole which prior to deformation had the shape of a circle of a certain radius. 
** The stresses u along the hole contour are 8 

K** 

K** 
p.d. 

Pl 

The concentration coefficient is given by the formula 

Linear 
0.1 0.2 0.3 theory 

4.15 4.30 4.45 4 
4.19 - 4.37 4.56 4 

For an incompressible material we have: 

in the case of plane deformation, 

in the case of a thin plate, 

1 
-4 cos 461) ; (35) 

18 



From the data in Tables 5 and 6 we see the effect of changes in the origi- 

nal shape of the hole on the stress concentration coefficients. 

Analysis of the stress condition near the hole in this case reveals that 

the distribution of stresses over the contour of the hole is considerably dif- 

ferent from that in Variant 1. Thus, as the load is increased, the stress con- 

centration at the point 8 = 0 of the contour diminishes, and (a ) is at- 

tained at the point 8 = a/2. 

** 
e m x  

In contrast to Variant 1, the maximum* stresses 

are compression stresses. 

Section 2. Stress Concenttation Near an Elliptical Hole /129 

a) Tension along the maior axis of an elliptical hole. 

Variant. In the deformed state, the hole is an ellipse with major semi- 

ax* a and minor semiaxis b. 

In the present section we cite data for the case of plane deformation of an 

incompressible material, where m = a-b = 1 . 
a + b  3 

p.d. is The concentration coefficient K* 

(37) 

It is clear from (37) that consideration of nonlinearity leads to an &- 

crease in the concentration coefficient in comparison with linear theory K 

as the tensile load increases, and to its reduction as compression forces in- 

= 2 0 

crease. 

Variant 2. This is the case of stress concentration near a hole of ellip- 

tical shape prior to deformation. 

Here the concentration coefficient is given by 
--*.A 

1-0.163 “->:I 
P 

*In absolute value. 
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For the same values of W p ,  formula (38) gives smaller values of K"" than does p.d. 

(38) as * formula (37). This smaller value of the concentration coefficient K 

compared with K* 

the hole, and its curvature at the point 0 = v / 2  diminishes. 

the shape of the hole more nearly approximates a circle, so that the stress con- 

p.d. 
I 

(37) under tension is due to the fact that tension flattens 

Under compression 

p.d. 

centration coefficient increases. 

b) Tension alonp the minor axis of an elliptical hole. 

(for m = 1/3) 

Variant 1. The concentration coefficient is determined from the formula 

Linear theory in this case yields a value of K = 5. 

N/v = 0.3 the value of K* 

The deviation from linear theory is evidently quite sizeable. 

Variant 2 .  The stress concentration coefficient is 

As is clear from (391, for 

= 4 . 3 0 6 .  * 
= 5.693,  and for N/p = -0.3 we have K p.d. p.d. 

__ 
/130 

= 5.09, re- For N/p = 20.3 the values of K (40) are K ** = 4.91 and K** p.d. p.d. 

spectively, which diverge but very slightly from the value K = 5 given by lin- 

ear theory. 

c) Tension (compression) from all sides of a plane with an elliptical hole. 

Variant 1. The concentration coefficient is given by the formula 

Variant 2 .  The concentration coefficient may be determined from 

- 4  1-0.063 
P g.c. ( "f - 
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Numerical values computed using formulas (41) and ( 4 2 )  for some values of 

N/p are given in Table 7 .  

Table 7 

I 
, -0.3 -0.2 

K* ! 4 3.18 3.45 

I 

p.d. 

K** 4 4 .08  4.05 
1 

Pl 
I 

As we see from Table 7,  Variant 1 involves substantial deviations from the 

-0.1 0.1 0.2 1 0 . 3  

3.73 4 .28  

4.03 1 3 .98  3.95 1 3 .93  

1 
i 

4 * 5 5  I 4 - 8 3  

I 

value K = 4 ;  this, of course, is as expected. 

The above results allow us to draw certain general conclusions. 

1. In nonlinear theory, the stress concentration coefficient depends both 

on the type and the magnitude of the load at infinity, and on the elastic prop- 
~- 

erties of the material and type of elastic equilibrium involved, i.e., plane de- 

formation or a generalized stress condition (the case of a thin plate). 

2. Increases (within a certain interval) in the tensile forces required 

for the deformation of the initial contour into a circle produce an increase in 

the stress concentration coefficient on the (deformed) contour in the case 1131 

of an incompressible material; increases in the compression forces result in a 

reduction of the coefficient. 

3 .  The deviation of the concentration coefficient from its value given bj 

linear theory is generally speaking quite significant. The largest difference 

is observed in the case of pure shear. 

4 .  For Variant 1, i.e., when the shape of the hole contour is given for 

the deformed state of the body, the stress concentration coefficient diminishes 

with increasing uniaxial tension and increases with uniaxial compression. These 
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changes may be explained by distortion of the shape of the initial contour into 

the given shape in the course of deformation. 

A particularly sharp change in the distribution of stresses over the hole 

contour is associated with pure shear. 

Table 8 contains expressions for the concentration coefficients K for a 

plane weakened by an elliptical hole for all of the problems considered above. 

Table 8 

Tension- Tension- Tension- 
Type compression compression compression 
of loading Variant along the along the from all sides 

i major axis minor axis 

Tension 

Compr e's s ion 

Tension- 

4 

m 

compress ion theory r 

Section 3. The Effect of Hole Reinforcement by Means of Elastic Rings 

In their paper C161 G. N. Savin and Yu. I. Koyfman consider the problem of 

reinforcing the edge of a round hole by means of an elastic ring plate consis- 

ting of a different, generally also nonlinear, material pressed or welded in the 

hole when the plate is under a homogeneous stress condition at infinity. 

r' 8 A s  illustrations, the authors give formulas for the stresses o o on the 

contact or weld seam contour for an infinite plane with a round hole (for the 

case of plane deformation of an incompressible material) press-fitted or weld- 

reinforced with an absolutely rigid round ring (washer). These formulas 1132 
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imply that absolutely rigid reinforcement reduces the concentration of stresses 

along the hole contour. 

In another paper C171, Yu. I. Koyfman solves the problem of reinforcing a 

round hole in an infinite plate with the aid of a ring made of thin elastic rod 

stock of constant cross section welded into the hole; the elastic equilibrium 

of the ring is described by equations from the theory of small deformations of 

thin curvilinear rods. 

The formulas and tables for the stress components along the contour includ- 

ed in C171 indicate that a reinforcing ring in the form of a linearly elastic 

curvilinear rod substantially reduces the concentration of stresses along the 

hole contour. 

Section 4 .  Stress Concentration Near Free and Reinforced Curvilinear Holes 

Summarizing studies in this most general (from the standpoint of nonlinear 

elasticity theory) field of research on stress concentration near holes as de- 

lineated in papers C2, 3, 4 ,  15, 16, 171, we see that the application of the 

powerful methods of plane linear elasticity theory, and, specifically, of the 

Kolosov-Muskhelishvili complex potentials in conjunction with conformal mapping 

and Cauchy integrals offers every possibility for obtaining effective approxi- 

mate (up to and including the second approximation) solutions of problems on the 

concentration of stresses near unreinforced as well as reinforced curvilinear 

holes. 

Reinforcement of such holes can be effected in two ways: by means of a wide 

elastic ring-plate, or with a narrow thin elastic ring, i.e., as is done in C161 

and C171 for a round hole. 

It is of course of considerable interest to the scientist and engineer to 

be able to reinforce holes with rings such that the stress concentration near 
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them is either totally eliminated or at least minimized. 

53. As we know, the usual distribution of stresses is usually altered 

near holes due to the appearance around them of so-called stress concentration 

zones. The stresses in these zones can reach relatively large values. 

especially true of holes with angular points of small radii of curvature. 

such angular points the stresses may come to exceed the elastic limit of the ma- 

terial and in the case of plastic materials may reach the yield point. 

This is 

At 

For many materials the tension-compression curve deviates from a straight 

For such materials as line (Hooke's law) even with relatively small stresses. 

the non-ferrous metals, certain plastics, et al., this curve departs from the 

straight curve of Hooke's law rather markedly. 

For the great majority of materials, the uniaxial tension-compression curve 

is of the shape shown in Figure 1. 

-* 
G t  

Figure 1. 

/133 

Let us suppose that a plate weakened by some small curvilinear hole is in a 

uniaxial stress condition with stresses IJ = p = const at infinity. 

At points sufficiently distant from the hole the stresses are equal to p, 

which corresponds to the point A (see Figure 1.) on the deformation curve; in 
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the stress concentration zone near the hole, the stresses may lie at point B 

and above (Figure l), i.e., at those points of the curve where the latter devi- 

ates slightly perhaps, but nevertheless noticeably from the straight curve of 

Hooke's law. 

We are now faced with the following question: How can these small depar- 

tures from Hooke's law affect the value of the concentration coefficient, as 

well as the magnitude of the stress concentration zone near a hole, and especi- 

ally a hole with rounded corners of small radii of curvature? 

In order to answer this question, we must compare the results of two solu- 

tions for the same case: the results of the classical solution, i.e., that based 

on linear elasticity theory, and the results of the solution which takes into 

account the above deviations from Hooke's law. 

Hence we see the necessity of knowing the stress concentrations near curvi- 

linear holes in a physically nonlinear (slightly divergent from linearity) plane 

field. In other words, we see the necessity of solving problems where in the 

fundamental equations of classical elasticity theory the linear dependence be- 

tween stresses and strains -- Hooke's law -- is replaced by a nonlinear law 
which becomes the usual Hooke's law for small deformations (e.g., for metals un- 

der deformations not exceeding 0.1%). 

- 

On such method of solving these problems on stress concentrations near 

holes is examined in paper by G. N. Savin C201. Savin adopts the simplest vari- 

ant of the nonlinear dependence between stresses and deformations suggested by 

t 

J 
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A s  experiments show, the dimensionless constant g ( 4 4 )  for the non-ferrous 2 

metals (copper, copper alloys, etc.) is of the same order of magnitude as the 
4 moduli K and G expressed in Kg/cm 2 , i.e., 10 5 6  -10 ; for this reason, A ( [ A ]  2) 
- I134 

for these materials is of the inverse order of magnitude of the moduli K and G, 

i.e., 10-5-10-6. For pure copper, for example, tension experiments with stres- 

ses of a - < 1000 kg/cm 2 yield values of 

The presence in equation ( 4 6 )  of the parameter h ( 4 7 )  of small absolute value 

naturally suggests that the solution of this equation might be sought in the 

form of the expansion 
I135 

~ 

where H is a constant equal to 0 

Substituting this expansion of the function F(x, y) into the basic equation ( 4 6 )  

and equating to zero the coefficients of like powers of E, we obtain an infinite 

system of nonlinear differential equations (51) and (52) for determining the 

functions F(O)(x, y) and F ( k ) ( x ,  y) (k = 1, 2, 3 ,....) 
(51) 

(52) 

where \ is a nonlinear operator over the functions and their derivatives of the 
previous approximations, i.e., over the functions F'O); F(l); F(2), . . . , F(k) and 

their derivatives. The expanded 

C201, and that of operator A2 is 

form of the operator A 

given in a paper by Jindra C231. 

is given in [211 and 1 
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, e n t i r e  powerful apparatus of plane l i n e a r  e l a s t i c i t y  theory C11. The function 

F(O) is determined from t h e  given forces along t h e  hole  contour and t h e  given 

conditions "at inf in i ty" .  The functions F ( l )  (x, y ) ,  F(2) (x, y ) .  . . , on the  o ther  

hand,are determined from non-homogeneous equations (52) f o r  zero va lues  of t he  

fo rces  along t h e  hole contour and a zero stress condition a t  i n f i n i t y .  

Clearly,  t he  p r inc ipa l  d i f f i c u l t y  i n  solving t h e  problem a t  hand cons i s t s  

i n  f ind ing  some p a r t i c u l a r  so lu t ion  of equation (52). In obtaining t h e  general 

so lu t ion  of homogeneous equation (52) with the  corresponding boundary conditions 

and conditions a t  i n f i n i t y  i t  is  convenient t o  make use of t he  powerful appara- 

t u s  of c l a s s i c a l  ( l i nea r )  plane problem of e l a s t i c i t y  theory developed by t h e  

school of Academician N. I. Muskhelishvili E l ] .  

The problem of stress d i s t r i b u t i o n  near a round hole  i n  a t h i n  plate con- 

s i s t i n g  of a phys ica l ly  nonlinear (by e l a s t i c i t y  r e l a t i o n s  (43)) material i s  

solved approximately ( t o  wi th in  t h e  second approximation) f o r  t he  f i r s t  time by 

J ind ra  i n  h i s  paper C231, which contains formulas f o r  t h e  stress components i n  

t h e  region around the  hole, and spec i f i ca l ly  along t h e  hole  contour. 

For t h e  concentration coe f f i c i en t  K i n  the ind ica ted  approximation w e  have 

the  formula 

(53) 
I sa y =  - =3 (1-3!$& js"). 

P -?- 
9 

The second term i n  (53) represents  a cor rec t ion  f o r  t he  physical non l inea r i ty  of 

t he  material. Thus, f o r  copper with p 333.3 t h i s  cor rec t ion  tu rns  out  t o  be 

about lo%,  i.e.,  l a r g e  enough t o  be considered i n  computations. 

Subsequently, I. A. Tsurpal C24-291 considered a number of new problems 1136 

i n  the  same formulation. Thus, i n  C241 he examines t h e  problem of t he  concen- 

28 



tration of stresses near a round hole in a nonlinearly elastic plate under ten- 

approximat ion 

1.990 
1.988 
1.985 
1,847 

- 

approximat ion 

1.990 

1.988 
1.985 

1.899 

sion from all sides. 

the stress function is taken in the form 

The solution is given in the third approximation, i.e., 

For the stress concentration coefficient K, Tsurpal obtains the formula 

=2 [ I - I J  t.p? + 10,605 i3p41.  

= , (54) 

From (54) we see that in the first place the stress concentration coeffi- 

cient K depends nonlinearly on the elastic properties of the plate material and 

on the magnitude of the external load p.  

This special problem is used to investigate the rate of convergence of the 

method of successive approximations, i.e., to compare the values of the concen- 

__ tration coefficient in the first, second, and third approximations for a copper 

plate with elastic constants (49). The results of this comparison are given in 

Table 9. 

Table 9 

2 p, kg/cm 

100 
200 
300 
450 

Linear theory 
First 

approximation 

2.000 

2.000 

2.000 

2.000 

I Concentration coefficient 
Nonlinear theory 

Second I Third 

We see from the table that at least for axisymmetrical stress conditions, 

already the second approximation yields a degree of accuracy sufficient for en- 

gineering purposes. 
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Paper E251 contains a study of the stress condition of a hollow cylinder 

under uniform external and internal pressure (plane deformation); the author 

takes into account the aforementioned (45) physical nonlinearity of the tube ma- 

terial. 

In C261 Tsurpal examines a plate with a round hole under conditions of pure 

shear at infinity. For the concentration coefficient (in the second approxima- 

tion) he obtains the formula 

K =  ( y )  = -4 sin 28 +Axz (17.38 sin 28 -6.2 sin 6 0 ) . /  
r-h! 

(55) 

Formula (55) implies that even with a small departure of the elastic law 

from Hooke's law the concentration coefficient does not remain constant, but de- 

pends quite considerably on the magnitude of the external load and on the elas- 

tic properties of the plate material. 

Paper C28J is concerned with the determination of the elastic constants /137 

K, G, and g2 for certain materials. 

In his paper presented at this Conference, I. A. Tsurpal examines the E- 

tact problem on the reinforcement of a round hole by means of an elastic ring of 

another material. 

Yu. I. Koyfman and G. N. Savin in C161. In this paper C291 I. A. Tsurpal is 

In its formulation this problem is similar to that solved by 

concerned with the effect of physical nonlinearity on the stress condition in a 

plate when the hole is reinforced by an elastic ring of a different material or 

by an absolutely rigid ring, or, finally, by an elastic washer welded into the 

hole. All of these cases are considered both for all-sided and for uniaxial 

stress conditions of the plate at infinity. 

The results of the studies of stress concentration near a round hole car- 

ried out in C24-271 indicate that with elasticity relations ( 4 3 ) ,  i.e., with 
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t h i s  v a r i a n t  of phys ica l ly  nonlinear theory and the  chosen degree of accuracy 

(up t o  and including t h e  second approximation) the re  is  a reduction of t h e  

stress concentration coe f f i c i en t  i n  comparison with l i n e a r  theory. 

J u s t  as i n  the  general  case of the  nonlinear plane problem discussed i n  52 

of t h e  present survey, t he re  are no s tud ie s  ava i l ab le  on the  convergence of t h e  

method of successive approximations for  t h e  phys ica l ly  nonlinear problems con- 

s idered  i n  93. Unt i l  t h e  present time, no paper has appeared on t h e  stress con- 

d i t i o n  near a noncircular hole under e l a s t i c i t y  r e l a t i o n s  (43), desp i t e  t h e  f a c t  

t h a t  it would be of g r e a t  i n t e r e s t  t o  i nves t iga t e  t h e  e f f e c t  of t h e  phys ica l  

non l inea r i ty  of t h e  material on t h e  Concentration of stresses a t  angular po in ts  

of ho le  contours where r a d i i  of curvature are q u i t e  small. 

A s  we know from 1101, t h e  method of solving phys ica l ly  nonlinear problems 

under e l a s t i c i t y  r e l a t i o n s  ( 4 3 )  as set f o r t h  i n  1161 permits one t o  undertake 

t h e  so lu t ion  of some problems during the elastic-plastic stage of deformation i n  

t h e  stress concentration zone. 

~ 

54. I f  a f l e x i b l e  elastic p l a t e  whose material obeys Hooke's l a w  i s  weak- 

ened by some s m a l l  hole and i s  subjected t o  t h e  ac t ion  of a uniform compression 

load applied along t h e  ou te r  p l a t e  contour, p r i o r  t o  los ing  s t a b i l i t y ,  i .e.,  p r i -  

o r  t o  buckling, t h e  p l a t e  w i l l  be i n  a plane stress condition. I n  t h i s  case a 

stress concentration zone arises near t he  hole,  and t h i s  can be determined by 

t h e  known methods. 

The problem of stress concentration near a hole i n  a f l e x i b l e  elastic p l a t e  

when it loses  s t a b i l i t y  and e n t e r s  the phase of p o s t - c r i t i c a l  deformations is of 

considerable t h e o r e t i c a l  and p r a c t i c a l  i n t e r e s t .  

I n  o the r  words, i t  is  very des i rab le  t o  know t h e  p a t t e r n  of t h e  stress /138 

condition near a hole i n  a f l e x i b l e  e l a s t i c  p l a t e  i n  the  s t age  of p o s t - c r i t i c a l  
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deformation. 

Unfortunately, we know of no published studies on this problem. The only 

papers in this area are by Ya. F. Kayuk E301 and C311, who is scheduled to ad- 

dress the present Conference. For this reason, I shall touch but briefly on his 

results, leaving a more thorough discussion to the author himself. 

In papers C301 and E311 the plate material is assumed to be elastic and to 

obey Hooke's law. 

formation of a thin round plate weakened by a small round hole and acted upon by 

a uniform compression load applied to its outer contour under the following con- 

ditions: 1) when the external contour of the plate is hinge supported, and 2) 

when it is rigidly fixed. 

external forces. In order to evaluate the variation of stress concentration 

near the hole and for purposes of comparison, the author likewise considers the 

problem of the post-critical deformation of a similar solid plate. 

of the problems posed is reduced to the integration of KSrmSn nonlinear equa- 

tions. 

The author considers the axially symmetrical post-critical de- 

The inner contour -- the hole contour -- is free of 

- - 
The solution 

The equations are solved with the aid of the small-parameter method. 

Kayuk's results are summarized in Tables 10 and 11. 

Table 10 indicates the membrane forces T on the free (inner) contour of 0 
e 0  

the ring plate. 

Table 10 
AP 

cr . 
E =- 

P 

Rigid fixed support 

0 
(Tee)p = 0.12 

0.00 1 0.10 0.30 I 0.50 0.70 

-1.69 

-2.90 
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0 Table 11 gives the values of the moments M,, on the free (inner) contour - -  
of the ring plate and along the corresponding contour of the solid plate. 

Table 11 

Plate 

Solid 

Ring 

0 
Me e 

I I 

Hinge support, p = 0.10 Rigid fixed support, p = 0.12 

5.41~ + 6.29~~ 13.66~ - 6.20~~ 
14.1~ + 6.11~~ 19.67~ + 3.96~~ 

AP 
P +AP' where rl = 
cr . /139 

From the data of Tables 10 and 11 we see that in the case of a plate hinge- 

supported along its outer contour, increasing post-critical deformations are ac- 

companied by a reduction of the concentration of membrane forces To on its free ee 
~ 

(inner) contour and by an increase in the concentration of the moments Mo in e e  
comparison with those on the corresponding (mentally isolated) contour p = 0.10 

of a solid plate. 

In the case of plate rigidly fixed along its outer contour, increasing 

post-critical deformations are accompanied by an increase in both the membrane 

forces To and the moments Mo on the free contour p = 0.12. e o  ee 
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